文章编号:1004-4213(2010)05-0797-5

新颖的微流控电调谐空间光开关*

陈陶,梁忠诚[†],徐宁,钱晨,赵瑞,毕岚

(南京邮电大学 微流控光学技术研究中心,南京 210003)

摘 要:提出了一种微流控电调谐非机械空间光开关器件,该器件的基本形式为"光输入阵列+光 交换空间+光输出阵列"的结构,采用"水/油/水"液体棱镜作为偏光控制单元.在特定电压范围 (30~110 V)内,通过电润湿效应作用的液体棱镜光束偏转角可在约-15°~15°之间连续可调.由 此可构造多种平面甚至立体光开关阵列.

关键词:微流控光学;电润湿效应;液体棱镜;光开关;光开关阵列

中图分类号:TN2,O43 **文献标识码**:A

doi:10.3788/gzxb20103905.0797

0 引言

光开关是光交换的核心器件,也是影响光网络 性能的主要因素之一.光开关作为新一代全光联网 网络的关键器件,主要用来实现光层面上的路由选 择、波长选择、光交叉连接和自愈保护等功能.目前 其主要商用类型有微机械开关^[1]和波导开关.微机 械开关工艺成熟,已经实现了大端口数目的开关阵 列.但 MEMS 利用移动部件实现光在不同埠间的转 换,在可靠性和开关速度、器件大小方面都不尽人 意^[2].波导型光开光开关速度快,结构紧凑,将是未 来光开关的发展方向.现在已经实现了二氧化硅基 的 64×64 的热开关矩阵^[3].但是二氧化硅受其热光 系数大小的限制*,无法实现高速开关.

而基于微流控电润湿效应的电控液体棱镜具有 较高的切换速度(~ms)、无偏振化影响、良好的操 控性和适应性,作为取代光学元件可应用于光互连、 三维光存储、光扫描、光学雷达等系统^[4].现有的电 润湿效应研究和应用主要集中于液体透镜变焦成像 技术,比较典型的如荷兰 Philips 公司发布的 FluidFocus 和法国 Varioptic 公司发布的小型液体 变焦透镜^[5],这些透镜的变焦是利用电控方法通过 改变液体的界面曲率进而调节焦距.这种技术采用 了流动的液体作为变焦的透镜组件,相对目前的机 械变焦方式将有很多的优势之处.但现有的研究和 应用集中于透镜变焦成像技术,对于应用于光通信 领域的连接器件涉及很少.

本文提出的微流控电调谐光开关将微流控技术 应用于光通信领域,提出了光无源器件研制的新思 路,目前已申请国家发明专利^[6].这种微流控电驱动 光开关阵列芯片构思新颖,结构简单、易于加工,具 有集成度高、开关速度较快、制作成本低、可重复性 好等优点,将会在光通信领域获得实际应用.

1 器件结构与原理

Neil R. Smith 等给出了一种利用电润湿微棱 镜(Electrowetting MicroPrisms, EMPs)进行光束 控制的新颖的理论基础如图 1^[4]. EMPs 通过调制液

图 1 EMPs 沟道横截面解剖和侧面图

Fig. 1 Angled and side view diagram of representative channel geometry for EMPs

Email:zcliang@njupt.edu.cn 修回日期:2010-01-22 体接触角从而模拟各种几何棱镜中的折射.他们利 用折射率为 n=1.359 的液体已经实现了连续 14° (±7°)的光束控制.理论上推断如果使用高折射率 (n~1.6)的液体将会形成~30°(±15°)内的变化.

^{*}国家自然科学基金(60878037、60977069)和江苏省自然科 学基金(BK2009424)资助

⁺ Tel:025-88586640

收稿日期:2009-10-19

这种方法可实现较高速(~ms)、光偏振无关、视场 束的调制(棱镜化)和独立于偏转角的高效转向率.

按照 Neil R. Smith 等人提出 EMPs 理论,本文 提出的利用 EMPs 进行光束控制的新颖的光开关 阵列器件的基本结构如图 2,它是的基本形式为"光 输入阵列+光交换空间+光输出阵列"的结构.该开 关器件以长方体状 EMPs 作为偏光控制单元,由光 输入阵列和光输出阵列及两阵列之间的光交换空间 组成.

图 2 微流控光学开关阵列芯片结构和原理 Fig. 2 Structure and principle of optofluidic optical switch array

(b) Plane

阵列单元如图 3 以具有侧面导电能力的长方体 状/圆柱状通孔为主体,同时作为一个电极,另一电 极则是位于通孔两侧的密封玻璃上的 ITO 导电层. 通孔内放置三种(或两种)互不相溶的液体即第一导 电液体即低折射率导电水溶液、绝缘液体即高折射 率的不导电油和第二导电液体即低折射率导电水溶 液,这三种液体在特定电压的作用下构成 EMPs 介 质;左前电源的以通孔左侧面的导电材料作为电极, 另一电极则是通过 ITO 导电层相连的第一导电流 体,通孔左侧面的导电材料同时作为左后电源的一 个电极,左后电源的另一个电极则是通过 ITO 导电 层相连的第二导电流体;同理设置右前电源和右后 电源的电极.如果使用两种流体材料构成棱镜,则去 掉上述左后电源和右后电源.在所述的侧面电极的内 侧涂覆绝缘层,避免侧面电极和导电水溶液直接接 触.绝缘层与液体接触的内侧设有疏水层.

(a) Unit structure

图 3 微流控光学开关单元结构和工作原理 Fig. 3 Structure and principle of optofluidic optical switch unit

当左前电源与左后电源、右前电源与右后电源 之间分别加上电压后,导电液体与侧壁之间的界面 张力因电润湿效应的作用而降低,从而改变液体界 面的形状,在特定电压下,液体之间的接触面变为扁 平,实现透镜棱镜的构成,对此电压进行调整可以改 变扁平面的法向,进而实现透射光偏转角的调控,通 过输入/输出液体棱镜阵列达到光的交换电控制目 的.为保证输入/输出光的耦合效果.按照光路可逆 原则,光输入棱镜单元和对应光输出棱镜单元的四 组电源电压分别保持一致.

2 器件制作方法

液体棱镜单元采用三液体形式如图 3(a),左右 两侧面导电材料为金属铜,在铜的表面采用真空镀 膜法生成 3 μ m 厚的派瑞林作为绝缘层.疏水层采 用聚四氟乙烯聚合物材料(商标名特富龙, Teflon @AF2400)涂层来实现.第一、二导电液体均采用相 同盐溶液使制作方便,但在低温使用时可能会有冰 冻凝固问题.可以用高浓度的盐溶液来降低凝固点. 为了保持盐水的低密度和折射率,采用低原子量的 盐:氯化锂. 20%浓度的氯化锂可使凝固点低于 -40 ℃,密度 ρ 为 1.12 kg/m³,折射率为 1.38.绝缘 液体采用混合的苯基甲基硅氧烷,它具有高折射率和 良好的电湿性能.溶解几个百分点碳四溴化合物(ρ= 2.96 kg/m³)的绝缘液体的密度与盐溶液的密度相匹 配.由此得到的折射率为 1.55.这两种液体的温度相 关折射率大体相同(dn/dT=-0.000 3/K).因此,在 所需的温度范围内,对液体棱镜形状的影响是很小 的,这种影响可以通过微调电压来补偿.ITO透明 玻璃采用高性能的薄玻璃片(如 VWR Scientific 公 司生产的一种生化实验专用的盖玻片,型号:WEST Chester,PA19380),该玻片韧性很好,透光率高,在 其上溅射一层 ITO 导电层.

通过对图 3(b)中每个电源施加一特定等值电 压 V。如 80 V,可以实现实现三液体呈直条状使光 的传播方向不发生偏折.如果上侧电源的电压小于 V。而下侧电源电压大于 V。,则可形成图 3(c)的液 体棱镜来实现光向右偏折,反之则可形成图 3(d)的 液体棱镜来实现光向左偏折.根据耦合棱镜单元间 的位置关系来推算光的偏折角从而确定电源的控制 电压,此电压由外围 IC 电路提供.

工作时,当需要光从输入端棱镜单元 m 耦合到 输出端的棱镜单元 n 时,根据控制电压与偏转角的 关系分别设定输入端棱镜单元 m 的左右控制电压, 同时设定输出端的棱镜单元 n 的左右控制电压与输 入端棱镜单元 m 的电压一致.当平行光从输入端经 液体棱镜偏折到输出端的液体棱镜时,由于两棱镜 参量设置一样,根据光路可逆原则,则光从输出端的 液体棱镜输出时也为与输入光方向一致的平行光, 这样很方便地和高效率地实现光的耦合.

利用上述的液体棱镜单元可以构造其他阵列如 1×N型光分路器如图 4,通过增加液体棱镜上下侧 面电极从而实现光的立体偏转,可以构造 M×N 型 立体光开关器件如图 5.

图 4 1×N平面型电调谐光开关器件结构

图 5 立体型电调谐光开关器件结构 Fig. 5 Structure of *M*×*N* tridimensional optofluidic optical switch

3 光束偏转控制

光束的偏转方向可以通过调控液体棱镜 EMPs 的顶角来控制.为了讨论方便,这里假定第一、二导 电液体均为相同的盐水溶液并设其折射率为 n_{water} , 绝缘液体折射率设为 n_{oil} ,空气折射率为 n_{air} ,其中 $n_{oil} > n_{water} > n_{air}$,3个液体棱镜的顶角分别为 φ_1 、 α 、 φ_2 ,如图 6.

给出

$$\delta = (i_1 - i_2) + (i_3 - i_4) + (i_6 - i_5) + (i_6 - i_5$$

$$(i_8 - i_7) = i_1 + i_8 \tag{1}$$

 $n_{\rm air} \sin i_1 = n_{\rm water} \sin i_2 \tag{2}$

$$n_{\text{water}} \sin i_3 = n_{\text{oil}} \sin i_4, i_3 = i_2 + \varphi_1$$
 (3)

$$n_{\text{oil}}\sin i_5 = n_{\text{water}}\sin i_6, i_5 = \alpha - i_4 \tag{4}$$

$$n_{\text{water}} \sin i_7 = n_{\text{oil}} \sin i_8, i_7 = i_6 - \varphi_2$$
 (5)

式中,入射角 i_1 实际为入射偏离角,假设为 0° ,则 $\delta = i_8$,联合式(2)~(5)即可得偏转角 δ 与液体棱镜 的顶角之关系.因为液体棱镜顶角的极限值大约在 20° (此结果随后给出),式(2)~(5)中角度均为小 量,则

 $\delta = i_8 = n_{\text{water}} (i_6 - \varphi) = n_{\text{oil}} (\alpha - i_4) - n_{\text{water}} \varphi = \Delta n \alpha, \Delta n = n_{\text{oil}} - n_{\text{water}}$ (6)

由本文讨论过程易得,若棱镜单元内放置的是 油/水两种液体,则偏转角 $\delta = \Delta n \varphi$,($\varphi = \alpha/2$),由此 可见棱镜单元内放置的水/油/水三种液体时偏转角 度可以提高一倍.

棱镜顶角由电润湿效应来控制,液滴在疏水层 表面的接触角θ可以由 Young 方程^[7] 描述

$$\cos(\theta) = \cos(\theta_0) + \frac{\varepsilon_{\rm r} \varepsilon_0}{2d\gamma_{\rm lg}} V^2$$
(7)

式中 θ 。是外加界电压为0时的接触角. θ 是在外界 电压为V时的接触角,ε_r是绝缘介电层的介电常 量,γ_k是导电液体与接触固体间表面张力,d 是绝缘 层的厚度.在绝缘介电层上加电压(电荷)时,液体和 含氟聚合物间的有效表面张力将会减小,从而会导 致接触角 θ 的减小.接触角是与棱镜顶角o相关的, $\varphi = |90^{\circ} - \theta|$.为了在两壁之间形成一条直线,则左侧 接触角(θ_{L})和右侧接触角(θ_{R})应该满足条件 θ_{L} + θ_{R} = 180°. 对于图 2,在实际应用中可以取上左电源和下 左电源合二为一VL,右上电源和右下电源也是如此 合为 $V_{\rm R}$,使得 $\varphi_1 = \varphi_2$.由图7,当 $V_{\rm L} = V_{\rm R} = 80$ V 时, $\varphi=0$,则对应图 2(b)的情形,光沿直线传播;当 $V_{\rm L}=35$ V,那左壁接触角 $\theta_{\rm L}$ 为 110°,那右侧的接触 角应为 70°,这要求右壁加电压 108 V.由 Lippmann-Young 方程可知,接触角随着外加电势 增大,接触角可以持续减小,最终接触角变成零,达 到完全亲水.但实际上,当外加电势增加到一定值 时,接触角不再随电压增大而减小,即通常所说的接 触角饱和现象[8].目前可用的液体和含氟聚合物限 制了接触角 θ 在 70°就产生了饱和^[9]. 由图 7(b)可 以看出,对于我们选用的材料(导电液体:盐水,折射 率 n_{water} 为 1.38; 绝缘液体: 苯基甲基硅氧烷, $n_{oil} =$ 1.55;绝缘电介质层:派瑞林,厚度 $d=3 \mu m;$ 疏水 层:Teflon,厚度 10 nm),对于水/油/水系统,光束 偏转角可以达到一8°~8°,如果水和油的折射率差 达到 0.3,则对水/油/水三液体系统光束偏转角可 以达到一15°~15°, 远高干水/油两液体系统(约为 $-7^{\circ} \sim 7^{\circ}$). 选择恰当的绝缘系数高的(如 SiO₂)和介 电系数高(如 BST)介电层材料可以有效地降低工 作电压. 疏水性和电润湿饱和问题将会是未来提高 偏转角的主要问题.另外,开关响应时间可以根据文 献[5]中 $\tau \propto (\rho \times V/\gamma)^{1/2}$ 估算,在开关单元的尺寸在 mm 以下时,其响应时间约为 ms. 开关速度将会随 着液体体积的减小而快速增大,使用先进生产工艺 将本电润湿装置加工成微小尺寸(例如 10 μm),开 关响应时间据理论估计将小于 μ s 量级,其中 $\rho \times V$ 是密度-体积乘积,γ为液体表面张力.当然这种光 开关的响应速度与一些超快非线性效应的光开关和 磁光、光子晶体光开关相比有一定的差距[10-12],但其 具有的加工和集成化制作成本低等优点,可应用于 中低端客户群或小区光接入网的智能配线架等.

4 结论

本文提出一种微流控电调谐空间光开关阵列器件,以解决光开关阵列的电控调谐偏光问题.该器件的基本形式为"光输入阵列+光交换空间+光输出 阵列"的结构,采用液体棱镜作为偏光控制单元,控 制单元以设有侧面电极的长方体状通孔为主体,通 孔两端用 ITO 玻璃密封三种或两种互不相溶的液 体,这两/三种液体在电润湿效应的作用下构成液体 棱镜介质并实现偏光电控调谐;多个偏光控制单元 构成光输入、输出阵列,两阵列之间的空间形成光交 换空间.然而这种新颖的光开关,由于现有材料疏水 性和电润湿饱和的限制使得光束偏转角只能在约 -15°~15°之间,这样就限制了这种光开关的集成 端口,疏水性和电润湿饱和问题将会是未来提高偏 转角的主要问题.

参考文献

- KAMAN V, HELKEY R J, BOWERS J E. Compact and scalable three-dimensional microelectro mechanical system optical switches[J]. Journal of Optical Networking, 2007, 6 (1):19-24.
- [2] CHI Chao-his, YAO Jin, TSAI Jui-che, et al. Compact 1×8 MEMS optical switches using planar light wave circuits[A]. In:OFC 2004[C]:8-10.
- [3] CHIE S, SHINJI I, MASAYUKI S, *et al.* High-speed waveguide switches for optical packet-switch routers and and networks[A]. In:*OFC* 2004[C]:158-160.
- [4] SMITH N R, ABEYSINGHE D C, HAUS J W, et al. Agile wide-angle beam steering with electrowetting microprisms[J]. Optics Express, 2006, 14(14): 6557-6563.
- [5] KUIPER S, HENDRIKS B H W. Variable-focus liquid lens for miniature cameras [J]. Appl Phys Lett, 2004, 85: 1128 -1130.
- [6] CHEN Tao, LIANG Zhong-cheng, XU Ning, et al. A novel optical switch chip of electrical-tuning: China, CN101482634 [P]. 2009.

陈陶,梁忠诚,徐宁,等.一种电调谐光开关器件:中国, CN101482634[P].2009.

- [7] DEMETRI P, STEPHEN R Q, YANG Chang-hei. Developing optofluidic technology through the fusion of microfluidics and optics[J]. *Nature*, 2006, **442**(27): 381-386.
- [8] PEYKOV V, QUINN A, RALSTON J. Electrowetting: A model for contact-angle saturation [J]. Colloid Polym. 2000, 278:789-793.
- [9] MUGELE F, BARET J. C. Electrowetting: From basics to applications[J]. J Phy Condens, 2005, 17: 705-774.
- [10] WANG Fei, ZHENG Yang-dong, LI Chun-fei. analysis of the characteristics of all-optical switch based on the SPM and XPM[J]. Acta Photonica Sinica, 2009, 38(4):790-795.
 王菲,郑仰东,李淳飞. 基于自相位调制和交叉相位调制的全 光开关特性研究[J]. 光子学报, 2009, 38(4):790-795.
- [11] WONG Zi-hua, CHEN Zhi-min, ZHU Yun, et al. A micro high-speed 1×2 magneto-optic switch[J]. Acta Photonica Sinica, 2006,35(3):357-361.
 翁梓华,陈智敏,朱赟,等. 高速微型1×2 磁光开关[J]. 光子 学报,2006,35(3):357-361.
- [12] CHEN Ming, XU Mai, LI Chun-fei, et al. Optical switch and bistability based on nonlinear one-dimensional photonic crystals[J]. Acta Photonica Sinica, 2005, 34(1):98-101.
 陈明,徐迈,李淳飞,等. 非线性一维光子晶体光开关与光双稳
 [J].光子学报, 2005, 34(1):98-101.

Novel Space Optical Switch Device of Optofluidic

CHEN Tao, LIANG Zhong-cheng, XU Ning, Qian Chen, ZHAO Rui, BI Lan

(Center of Optofluidic Technology, Nanjing University of Posts & Telecommunications, Nanjing 210003, China)

Abstract: A novel space optical switch device of optofluidic is proposed to solve the problems of electrical controlling without mechanical device. The basic structure of the switch includes a core exchange space sandwiched between two optical arrays. The basic unit of array is made from liquid prism as a beam control unit including three kinds of immiscible liquids(water / oil / water). Through the electro-wetting effect, the beam deflection angle of the liquid prism can be adjusted about -15 ° ~ 15 °continuously in a specific voltage range(30 ~ 110 V). Thus one can construct a variety of two-dimensional or even three-dimensional optical switch array.

Key words: Optofluidics; Electro-wetting effect; Liquid prism ; Optical switch ; Optical switch array

CHEN Tao was born in 1974, and received his M. S. degree in science from Physics Department of Nanjing University of Science and Technology in 2004. Now he is a lecturer and Ph. D. degree candidate, and his research interests focus on fiber-optic communications devise and micro-fluidic optical technology.

LIANG Zhong-cheng was born in 1958. He is a professor and Doctoral Supervisor, and his current research interests focus on optical information processing and micro-fluidic optical technology.